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ABSTRACT 

A reaction-diffusion type system of partial differential equations is proposed for the 
description of an oscillating decomposition regime of gypsum which has been indicated by 
thermogravimetric measurements by Heide et al. (1980). A discussion of the model shows that 
the observed oscillations of the stream of evading water vapor may be caused by the onset of 
self-oscillations, and the formation of structures, of thermokinetic origin. The exothermic 
heat effect of the back reaction of water into hemihydrate proves to be an essential 
precondition of the oscillations. Oscillations of quasi-isothermal chemical type are rather 
unlikely. 

INTRODUCTION 

A paper by Heide, Kluge and Hlawatsch [l] reports that the thermal 
decomposition of medium-sized (36.1-50.5 mg) samples of gypsum CaSO, - 

2H,O is attended by an oscillating stream of water vapor. Here, we propose 
a phenomenological description of these decomposition reactions by a 
system of partial differential equations (PDEs). The description assumes 
that the onset of oscillations is due to thermokinetic nonlinearities. Physical 
aspects of an approximative separation of this system of PDEs will be 
discussed. 

The current level of experimental knowledge of the interior mechanism of 
the decomposition is rather low. This justifies our mathematical discussion 
of the given PDEs aiming only at a preliminary estimate of various possible 
explanations of the experiment on the basis of the given model. Other 
possible models have been discussed in an earlier paper developing a 
quasi-isothermal semi-kinetic approach [2]. 

BASIC EQUATIONS 

Gypsum and its decomposition products will be denoted by A=CaSO, . 

2H,O, B=2CaSO, - H,O, -aSO,, W=H,O. The different crystalline mod- 
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ifications of the hemihydrate B shall not be distinguished. The two consecu- 
tive reactions 

2A2B+3W,B$2C+W 
k-2 

(A) 

or 

A&+2W,2C+W ZB 
k-2 

(B) 

shall be assumed to be different possible elementary reactions of the 
decomposition. Experimental data on the single steps of the mechanism (A) 
or (B) may be found in refs. 3 and 4, or in the papers quoted therein. 

The kinetics of the decomposition will be described by a l-dimensional 
model. We assume the existence of a continuous reaction zone of the sample 
which is preceded by an interior phase boundary discontinuity. The origin 
[ = 0 of a rigid axis of coordinates { [) shall be fixed to this discontinuity as 
a point of reference. The ~-axis is supposed to be parallel with the outward 
normal of the crystal surface. 

The velocities u,, ua, vc of the components A, B, C with respect to the 
system { [} are assumed to agree with the local velocity ur_ of the lattice of 
the crystal, i.e., u, = ug = uc = UL(l, t). A IIOnVakShing diffusion flUX Of 

water W, and the heat flux will be taken into account. The diffusion 
coefficient and the heat conduction coefficient will be denoted as D and h, 
respectively. 

With these suppositions, the system of balances of particle 
enthalpy (of the density h = cPT + const) may be written as 

0 + a&u,) =fA 

atb + a{(bUL) =fB 

arc + +bk) =fc 

a,w+ i3&vUL) - a,(m,w) =fw 

&T+ i+(TuL) - i3;T=fT 

number and of 

0) 

where the rate functions according to the kinetics (A) or (B), respectively, 
are 

fA = -2kla2, fB = k,a2 + k_,c2w - k,b, fc = 2k2b - 2k_2c2w, 

fw = 3k,a2 + k,b - k_2c2w, fT = $ [2k,a2Ah, + (k,b - k_,c2w)Ah2] 

or 

fA = -k,a, fB = k2wc2 - k_2b, fc = kla - 2k2wc2 + 2k_2b, 

fW=2k,a-k2wc2+k_2b, fT=$[k,aAh,+(k2wc2-k_,b)Ah,] (lB) 
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(cf., e.g., [5]). Here, the symbols a, b, c, w denote the particle number 
density (mol cms3) of A, B, C, W and T is the temperature, Ah,, Ah, are 
the molar reaction enthalpies of the two reaction steps, and cp is the heat 
capacity per unit volume. For the rate coefficients the Arrhenius equation 

ki = zJ eBEjlRT, j = 1, +2 (2) 

will be used.Together with an equation of state, e.g. W = W(a, b, c, T), or 
with an equivalent other assumption (cf. eqn. 4) system (1) is a closed 
system determining the six unknown functions a, b, c, w, T, uL of [, t. 
Other concepts of the description of the processes represented by (1) have 
been discussed in [6]. One of the various interdependency relations of the 
rates (lA), or (1B) allows one to deduce 

a,@ + 2b + c) + a&u + 2b + c)rJr] = 0 (3) 

from the first three equations of system (1). 

REDUCED EQUATIONS 

In the following, the system (1) with (lA), or (lB), respectively, will be 
rigorously simplified. Among various other assumptions, separations of slow 
and fast variables will be applied. Such separations are reasonable, if some 
ratios of rate coefficients and transport coefficients are small. A mathemati- 
cal basis of slow-fast approximations is given in the theory of singular 
perturbations of PDEs (cf. [7]). 

First, we assume that the main processes of the decomposition of the 
crystal take place within a comparatively small and almost homogeneous 
region (Si, 12). This region is supposed closely to succeed the phase boundary 
at 5 = 0, and to have a velocity 

UL = u,(S, t) = UL(l) (4) 

Reactions at the phase boundary 5 = 0 are excluded. With (4), the integral 

a + 2b + c = a, = cf = const (5) 

of (3) follows. This integral fulfills the condition of homogeneous distribu- 
tion u(S) = a, = 1.3475 X lo-* mol cmm3 of pure substrate A at t = t, = 0. 
In (5), it has been observed that the final state of the decomposition is a 
constant profile c(S) = cf of pure C. The value a, = cf is smaller than the 
particle number density c,,.,,~ = 2.1743 x lo-* mol cmw3 of monocrystals of 
C. This consequence of (1) and (4) might be related to the porosity of the 
structure of the component C which is formed on heating samples of A. 

Secondly, we assume that the substitutions 

- a,( oa,w) + u,agw = M( w - #L&w,) (6) 

-c,M;T+ c,u,a,T= K(T- T,) (7) 
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can be used. In this equation, W, and T, denote the density of water vapor 
and the temperature in the su~o~dings of the crystal; p is the ~qu~ib~um 
particle distribution coefficient at the surface of the crystal, and M, or K are 
supposed to be constant mean tr~siti~~ coefficients of transport of water, 
or heat, respectively, between the reaction zone and the exterior of the 
crystal. 

Thirdly, we assume that the approximations 

i),b = 0 (81 

a*a=o (91 

are valid in the main part of the reaction zone, and for a considerable length 
of the reaction time. Equation (8) is motivated by the reversibi~ty of the 
second reaction step of the mechanisms (A) or fB), and by the mobility of 
W. The relation f9) is based on the supposition +Z >> i&b, $w, i&T. This 
means that fast first steps of the reactions (A) or (B) lead to stationary 
profiles a(SI t) = a([) in a relaxation time which is short if compared with 
the long range time scale of the slow variables. 

From (1, 4-91, one obtains the system 

b=fB 

* - Mfyw, - w> = fw 

c$=lc(T,- T) =cpfT 
(10) 

of three s~~t~~us ordinary ~ff~re~ti~ ~uations (UDEs) with (*&a,. 
This system determines the dependence of time of the functions b, w, T with 
the kinetics {A) or (B), respectively. 

According to (1) and (9), the function a = a({, t) on the right hand side 
of (10) has to be taken as an integral of 

v&Q =f. = 
i 

-2a’z, exp(-E,/RT) (A) 

+a~, exp( -E,/RT) W 

(cf. (1), (2) and (9)) in which the unbox T= r(‘fs, t) is involved, and 
where uL = uL(t) is an arbitrary function. The relation fll> is fu~ill~d most 
simply if the density of A through the reaction zone is almost va~s~ng, i.e., 
a = 0. This value will hold, if A decomposes rapidly near the reaction front. 
On the other hand, it might also be supposed that the temperature T 
depends only very weakly on {, so that 

k,( T)/uL( t) = 2 = const. 02) 

Then (11) leads to 
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where 2, = const. The profiles (13) decrease from the phase boundary 5 = 0 
towards the exterior of the crystal, if 2, > 0. 

At D = const, eqns. (6) and (7) have solutions of the form 

w([, t) =~we+Q1(t) exlb-t-Q,(t) exzs 

T([, t) = T, + o,(t) eKlr + @,(t) eK23 

where 

x i/2 = u,/ZD * v2J4D2 - M/D 

04) 

(15) 

06) 

h/2 = vL,/= zk &/4x2 - K/Xc, (17) 

The functions ur, O,, O,, 52,, Q, of t have to be determined according to 
the algebro-differential problem (2, 10, 12, 14, 15). The roots of (16) and 
(17) are real and positive if ut > 4MD, and if u: > 4KX/c,. This case 
admits monotonous profiles of w, T which increase along the positive 
{-axis. On the other hand, at vi < 4MD, or $_ <: 4KX/c,, the profiles of w, 
T are oscillations which have increasing amplitudes on the S-axis. The 
dependence of Ton c is weak, and (12) will hold, e.g., if K/he, is small and 
O,=O. 

After these reductions, the vital point of the description of oscillating time 
structures of the decomposition is in the eqns. (10). These ODES can be 
solved at given parameter values and initial conditions by standard numeri- 
cal methods. They can have self-oscillating solutions if proper parameter 
values are chosen. In order to prove that, the Hopf-bifurcation theorem may 
be applied (cf., e.g., f&9]). This can alternatively be proved by investigating 
some physically instructive special cases. 

DECOUPLED SUBSYSTEMS OF TWO SIMULTANEOUS ODES 

In order to find cases in which (10) decouples into a separate ODE and a 
subsystem of two simultaneous ODES admitting autoperiodic solutions we 
list various assumptions and the subsystems of two ODES which follow from 
them. 

I. Kinetics (A) at k_,c*w = 0 

b = k,a2 - k,b 

c$‘- K(T, - 2”) = 2k,a2Ah, + k,bAh, 

Since k, - expf -E,/RT), i = 1,2, and since at fixed { the functions 
a({, t) may be taken as a constant (cf. 2, 9), the eqns. (18) have exactly the 
form of the equations of a tank-reactor (CSTR) model given by Sal’nikov 
[lo] and Frank-Kamenetskij [ll]. This model, the SFK-CSTR, admits the 
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existence of self-oscillations, in principle. An extensive numerical investiga- 
tion of this topic has been presented in [12] but, with the above suppositions 
which forbid back reactions of water, the existence of limit cycles of (18) is 
excluded by the Bendixon negative criterion (e.g., [13]) because of Ah, -c 0, 
Ah, -C 0. 

II. Kinetics (A) at a,w = 0 (CL (9); slow-fast separation a,a >> a,w >> i3,b, &T) 

& = k,a2 + k_,( a, - a - 2b)2w - k,b 

c,?- K( T, - T) = 2k,a2Ah, + [ k,b - k12(a, - a - 2b)2w] Ah, 
09) 

This system determines the dependence on time of b, T. In (19), the 
densities a, w may be regarded approximately as time-independent con- 
stants varying with [. If a = 0, b -+z a,, is assumed, the system (19) goes over 
into a form of the SFK model which allows limit cycles. An even more 
voluminous region with auto-oscillations than in the subcase a = 0, b -=SC a, 
must be contained in the higher-dimensional parameter space of (19). The 
existence of limit cycles of (19) hints at the importance of the reversibility of 
the second step of the mechanism (A) for oscillations. 

If some self-oscillating solutions b, T of (19) have been computed, the 
faster function w is determined by the algebraic relation 

Mpw, + 3k,(T)a2 + k,(T)b 

w= M+k_2(T)(a,-a-2b)2 
(20) 

where (13) has to be substituted. 

III. Kinetics (A) at k,b = 0, b << a, 

tit - M(pw, - w) = 3k,a2 - k_,w( a,, - a)’ 

c,,?- K(T, - T) = 2k,a2Ahl - k_,w(a, - a)2Ah2 
(21) 

At M = 0, (21) goes over into a SFK-system having limit cycles in the 
wT-plane, if the parameters at fixed 5 (cf. (9, 13, 15)) are chosen ap- 
propriately. Consequently, the eqns. (21) with M # 0 will also have self- 
oscillating solutions w, T. The existence of limit cycles of (A) at k2b 5: 0 
suggests that the back reaction of the consecutive step of this mechanism is 
particularly important in the formation of oscillating time structures. 

Ir Kinetics (B) at k_,b = 0, b e a, 

If the exchanged meaning of the symbols k_,, k,, Ah 2 of the mecha- 
nisms (A), (B) is taken into account, these assumptions agree with those of 
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the case (III). So do the equations which follow by them, if slight changes of 
the time-independent factors at k,(T) are disregarded. 

V: Kinetics (B) at 3;~ = 0 (cf: (9); ~~u~-fast separation $a z+ 8,~ z=- a,b, atT) 

One obtains equations and conclusions which essentially agree with those 
of the above case (II). Slight changes of the case (B) in comparison with (A) 
concern only the terms of the first reaction steps, and the exchanged 
mea~ng of the symbols k_,, k,, Ah,. 

VI. Kinetics (A), or (B) at T = const 

The approximations (13) of (11) become exact results. From (lo), two 
s~ult~eous ODES with algebraic non~ne~ties of third order in the 
variables b, w remain (k,, kZ, k_2 = con.%). In order to prove the existence 
of limit cycles of these systems, theorems like that of Levinson-Smith (cf. 
ref. 14, p. 180) did fail. From this, we infer that probably no oscillations of 
the above reaction mechanisms will occur which are of chemical (isothermal 
kinetic) type. 

CONCLUSIONS 

The above discussion outlines physical aspects of a mathematics more 
advanced appro~mation of the proposed system of PDEs which has to be 
done. Notwithstanding the different restricting suppositions which lead from 
the PDEs (1) to the simultaneous systems of ODES (lo), the investigation 
makes evident that a rich class of thermokinetically oscillating consecutive 
decomposition reactions of solids could exist. The oscillating decomposition 
of gypsum at constant heating fl] might be subordinated to such sdf-oscilla- 
tions. In this case, the exothermic heat effect of the back reaction of water 
into hemihydrate is an essential precondition of the oscillations. Isothermal 
chemical oscillations are rather unlikely. 
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